|本期目录/Table of Contents|

含模糊数据的决策单元规模收益问题研究(PDF)

《内蒙古大学学报(社会科学版)》[ISSN:1000-9035/CN:22-1262/O4]

期数:
2019年03期
页码:
106-112
栏目:
经济学研究
出版日期:
2019-05-15

文章信息/Info

Title:
A Study on Returns to  Scale of  Decision-making Unit with Fuzzy Data
作者:
张倩伟1特木钦2
1. 中国人民大学数学学院;  
2. 中国人民大学经济学院,北京 100872
Author(s):
ZHANG Qian-wei1 TE Mu-qin2
1. School of Mathematics, Renmin University of China; 
 2. School of Economics, Renmin University of China, Beijing 100872, China
关键词:
DEA模型 效率 模糊数据 规模收益
Keywords:
DEA models efficiency fuzzy data returns to scale
分类号:
-
DOI:
-
文献标识码:
A
摘要:
基于Zadeh的扩展原理和生产可能集理论,研究投入产出含有模糊数据决策单元的规模收益问题。通过构建模糊DEA模型,计算决策单元效率值的上下限,根据这些效率值,给出判别决策单元处于不同规模收益状态(递增、不变、递减)的充分必要条件。通过数值算例,说明判别方法在分析决策单元规模收益时的具体应用。
Abstract:
Based on Zadeh’s expansion principle and the production possibility set theory, the problem on  returns to scale of input-output decision unit with fuzzy data is studied. By building a fuzzy DEA model, the upper and lower performances of DMUs of the decision-making unit are calculated. According to the performances of the DMUs, the necessary and sufficient conditions for evaluating the status of returns to scale(increasing, constant and decreasing) of DMU are proposed. An empirical example is given to show the applications of the above method.

参考文献/References

[1]Charnes A, Cooper W W, Rhodes E. Measuring the Efficiency of Decision Making Units[J]. European Journal of Operational Research,1978(2).
[2]Banker R D. Estimating Most Productive Scale Size Using Data Envelopment Analysis[J]. Journal of Operational Research,1984(17).
[3]Banker R D, Thrall R M. Estimating of Returns to Scale Using Data Envelopment Analysis[J]. European Journal of Operational Research,1992(62).
[4]Fare R, Grosskopf S. Estimation of  Returns to Scale Using Data Envelopment Analysis: A Comment[J]. Journal of Operational Research,1994(1).
[5]Zhang Q W, Yang Z H. Returns to Scale of Two-stage Production Process[J]. Computers & Industrial Engineering, 2015(90).
[6]Banker R D, Cooper W W, Thrall R M, Seiford L M, Zhu J. Returns to Scale in Different DEA Models[J]. European Journal of Operational Research,2004(154).
[7]张倩伟. 生产前沿面的规模收益结构分析[J].统计与决策, 2010(14).
[8]张倩伟. 规模收益的动态因素分析[J].数学的实践与认识, 2010(16).
[9]Bellman R E, Zadeh L A. Decision-making in a fuzzy environment[J].Management Science,1970(17B).
[10]Zhang Q W, Gao J W. Fuzzy DEA with Series Network Structure[J]. Advanced Science Letters,2012(7).
[11]杨志华, 张倩伟.含模糊数据决策单元间的资源分配问题——基于DEA和Shapley值的研究[J]. 系统工程理论与实践, 2016(3).
[12]Wen M L, Li H S. Fuzzy Data Envelopment Analysis: Model and Ranking Method[J]. J. Comput. Appl. Math, 2009(223).
[13]Kao C, Lin P H. Efficiency of the Parallel Production Systems with Fuzzy Data[J]. Fuzzy Sets and Systems, 2012(198).
[14]Wei Q L, Yan H. Congestion and Returns to Scale in Data Envelopment Analysis[J]. European Journal of Operational Research, 2004(153).
[15]Liu S T, Chuang M. Fuzzy Efficiency Measures in Fuzzy DEA/AR with Application to University Libraries[J]. Expert System Application, 2009(36).
[16]Kao C, Liu S T. A Mathematical Programming Approach to Fuzzy Efficiency Ranking[J] International Journal of Production Economics, 2003(86).

备注/Memo

备注/Memo:
收稿日期:   2017-11-20
基金项目:中国人民大学科学基金项目(中央高校基本科研业务费专项资金资助,项目批准号:16XNB036)
作者简介:张倩伟,女,山东曲阜市人,中国人民大学数学学院,副教授;
特木钦,男,蒙古族,内蒙古呼和浩特市人,中国人民大学经济学院,博士研究生。
更新日期/Last Update: